
Sketching ER diagrams
Paul Schmieder, Beryl Plimmer, Gillian Dobbie 

Department of Computer Science  
University of Auckland, Private Bag 92019 

 Auckland, New Zealand 
{psch068@ec, beryl@cs, gill@cs}.auckland.ac.nz 

 

Abstract
Hand-drawn diagrams are frequently used as the first 
visualization of a model.  Converting these preliminary 
diagrams into a specific formal format is time consuming. 
Computer based sketch-tools can offer support during the 
informal sketching stage and automatic conversion to 
formal representations. Entity Relationship diagrams are 
particularly difficult to convert because of their 
characteristics such as cardinality notations. We extend 
the general diagram sketching tool InkKit with domain 
semantics to successfully recognize and automatically 
convert Entity Relationship diagrams. This approach 
takes advantage of sketching as the preferred initial 
design realization while minimizing the effort required to 
translate the initial design to a functional prototype.  
Keywords: Sketch tools, system modelling, recognition 
algorithms 

1 Introduction 
During childhood expressing feelings, wishes and 
impressions by sketching or painting is a natural and 
familiar process. Keeping this familiar approach of 
illustrating ideas with a stylus rather than a keyboard or 
mouse in a computer environment enables a natural and 
informal way of interaction. Studies have been conducted 
to examine the benefits of computer-based sketch tools 
(Goel 1995; Plimmer and Apperley 2004). Although 
sketch tools are still not as intuitive as traditional 
sketching (pen and paper), input based on a digital stylus 
was recognized to be more genuine and friendly than 
other input devices (Bailey and Konstan 2003; Yeung 
2007). 

One function of sketch tools is to recognize and 
convert the sketches into symbolic expressions 
representing the user's intent. The demands on the 
recognition algorithms are high because different element 
types within one sketch might consist of similar looking 
shapes making them hard to distinguish. Additionally, the 
fact that sketches from different domains use different 
notations makes general approaches to successful 
recognition, interpretation and conversion a more 
challenging task. 

Copyright (c) 2009, Australian Computer Society, Inc. 
This paper appeared at the Tenth Australasian User 
Interface Conference (AUIC2009), Wellington, New 
Zealand. Conferences in Research and Practice in 
Information Technology (CRPIT), Vol. 93. Paul Calder, 
Gerald Weber, Eds. Reproduction for academic, not-for 
profit purposes permitted provided this text is included.

One use of sketching is Entity Relationship diagrams 
(ER). Applied in database development processes ER's 
provide an easy solution to specify database drafts at a 
preliminary stage. Commonly used for designing formal 
databases including attributes and their relationships, 
ER's describe coherences between its components.  

A software toolkit already recognizing and converting 
digital sketches is InkKit (Plimmer and Freeman 2007). It 
supports the development of additional diagram domains 
with its layered architecture.  This makes InkKit an 
effective platform to extend. Furthermore, the distinction 
between the interpreter layer within a certain domain and 
its following output layer enables easy code integration to 
generate various database specific formats from the 
domain specific interpreter. 

ER diagrams are an example of a range of diagrams 
for which sketch tool support has not been fully explored. 
For example, similar types of connectors are used in 
UML class, activity and object diagrams. Furthermore, 
due to the interconnectivity of the ER diagram’s 
components, spatial and context error detection can be 
processed. A successful ER domain implementation, 
therefore, contributes to extensible sketch tools 
improving core recognition engines and techniques for 
domain specific error correction. To validate our 
implementation we applied student textbook exercises to 
InkKit's new ER domain from which the rate of precision, 
success and simplicity are measured. 

Before ER diagrams are introduced in more detail in 
section three, related work is described in the next 
section. In section four, our approach is explained in 
detail and is followed by an evaluation of the new ER 
domain in section five. A discussion follows in section 
six and we finish with conclusions and future work. 

2 Related Work 
There is a variety of existing sketch tools which differ in 
some of their basic features such as recognition domains, 
recognition engine or the ability to process text. Many of 
these sketch tools are used to recognize diagrams related 
to Computer Science or Engineering  such as User 
Interface diagrams (Landay and Myers 1996; Lin, 
Newman et al. 2000; Bailey, Konstan et al. 2001; 
Plimmer and Apperley 2003), UML class diagrams 
(Damm, Hansen et al. 2000; Hammond and Davis 2002) 
or circuit diagrams (Alvarado and Davis 2004).  

The core component of every sketch tool is the 
recognition engine of which basically two different types 
exist: domain specific and generic. While specific 
recognition engines are designed for specific domains, 
generic recognition engines are capable of recognizing



Figure 1. Architecture InkKit

different types of diagrams and support extensibility for 
domain specific rules.  

Silk (Landay and Myers 1996) was one of the first  
interactive sketch tools, its recognition engine was 
specifically designed to recognize user interfaces. It was 
followed by Knight (Damm, Hansen et al. 2000) and 
Tahuti (Hammond and Davis 2002) which recognize 
UML class diagrams, DEMAIS (Bailey, Konstan et al. 
2001), Freeform (Plimmer and Apperley 2003) and 
SketchiXML(Coyette, Vanderdonckt et al. 2007) enable 
UI design recognition.  

Whereas these tools are all based on a recognition 
engine dedicated to particular domains, Lank’s 
framework (Lank 2003), SketchREAD (Alvarado and 
Davis 2004) and InkKit (Plimmer and Freeman 2007) use 
a generic recognition engine which can be extended to 
processed sketches from different domains. However, the 
level of complexity to add a domain differs. While it is 
very complex and code intense to add a domain in Lank’s 
framework it is not in InkKit or SketchREAD. A different 
general approach is proposed by Costagliola et al. (2004) 
which operates on grammar productions describing the 
spatial relations between diagram elements. An important 
feature of sketch tools is text recognition. While Lank’s 
framework (Lank 2003) and InkKit (Plimmer and 
Freeman 2007) support text and drawing recognition 
SketchREAD (Alvarado and Davis 2004) does not 
support it all and Tahuti (Hammond and Davis 2002) 
only partially. 

Figure 2. ER diagram

In this project we extend InkKit to recognize ER 
diagrams (Figure 2) as an exemplar of a class of diagrams 
with similar notations. The closest diagram type which 

has been addressed by other projects (Hammond and 
Davis 2002; Chen, Grundy et al. 2003) is the UML class 
diagram. However, ER diagrams are different and 
provide new challenges such as the complex relations 
between components. 

Furthermore, in contrast to UML, ER models are not 
standardized. Originally proposed by Chen (Peter Pin-
Shan 1976) many different notations have since been 
introduced: one frequently used notation is the SSADM 
(Weaver 1998).  

Beside the ER domain InkKit already successfully 
recognizes other domains such as UI’s, undirected and 
directed graphs, organization charts and UML class 
diagrams. The particular challenge with ER diagrams is 
the multiple types of connectors. 

2.1 InkKit 
Consisting of two major user interfaces, portfolio 
manager and sketch pages, InkKit supports a well tested 
robust and intuitive interaction (Plimmer, Tang et al. 
2006). The user can ink on the sketch page, manipulate 
their sketch with resize, copy, cut and paste actions. At 
the same time all sketches are shown as thumbnails on the 
portfolio manager and can be linked with each other. To 
preserve the hand drawn appearance no beautification of 
the sketch is processed (Bailey and Konstan 2003; Yeung 
2007).  

InkKit’s overall architecture is presented in Figure 1. 
Before the recognition is processed the sketched strokes 
(the group of single lines drawn on a computer) are 
divided into either text strokes or drawing strokes. Then 
the text strokes are grouped into words and recognized 
whereas the drawing strokes belonging to one shape are 
internally joined together, to be considered as one stroke 
by the shape recognizer (Plimmer and Freeman 2007).  

The joining is necessary to apply Rubine’s single 
stroke algorithm (Rubine 1991) to recognize shapes 
within a sketch. To increase the recognition accuracy 
basic shapes are recognized first. This is possible because 
complex shapes can be defined as a sum of basic shapes. 
For example Figure 3 shows a connector with an optional 
cardinality constraint which is a composition of the basic 
shapes line and circle. 



Figure 3. A connector consisting of the basic shapes line 
and circle

Instead of recognizing this complex shape as a whole, 
the circle and the line are recognized as single shapes and 
combined later in the recognition process. InkKit has an 
extendable set of basic shapes such as rectangles, circles, 
lines or triangles.  

Up to this point the recognition process is domain 
independent: all sketched strokes have been classified as 
writing or drawing and further recognized as a word or 
basic shape. The next step is to group the single basic 
shapes together to the most likely components which are 
predefined complex shapes belonging to a specific 
domain.  

The predefined shape sketches are stored in a domain 
library and can be edited or extended by the user. The 
matching is processed using three sets of features. First, 
based on spatial features between elements (enclosing, 
enclosed, near or intersecting, relative position and their 
orientation) the probability of relationships between 
components is computed. Next, based on the already 
calculated probabilities, the sketched element’s shape and 
its spatial position, the likelihood for this element being 
part of a predefined component of the domain library is 
determined. 

 As a result of the first two steps a complete set of 
combinations of possible basic shapes is built, upon 
which probability tables are computed. The table for each 
component includes the combination’s chance of being a 
certain predefined complex component. This step also 
considers features such as the shape’s bounding box 
properties. After bringing all calculated features for 
possible combinations together an overall probability per 
combination is determined. The final assignment of a 
combination to its domain specific component is then 
processed starting with the combination which has the 
highest probability followed by all other still possible 
combinations ordered by descending probabilities.  

To integrate a new type of diagram a domain specific 
interpreter and sketched examples of all components 
defining the domain are necessary. Within the interpreter 
the components have to be defined and a data model of 
these components has to be build which presents the 
components themselves and their relations to each other. 
In addition error correction routines can be part of this 
model. Upon the generated component model additional 
output modules which produce data in a specific format 
can be implemented.  

All explained steps are implemented in single layers 
which communicate through interfaces with each other. 
This design enables an easy modification of every layer 
which is why new technologies can be adopted, 

implemented and tested within the appropriate layer 
without the need to alter the other recognition steps.   

3 Entity Relationship Diagram 
First introduced by Chen (Peter Pin-Shan 1976) in 1976 
the Entity Relationship model offers a way to present 
structured data in an abstract manner. Based on the ER 
model the diagram is a visual representation of given 
data. ER diagrams are used as a formal representation of 
different entities within a database and their relations.  

In contrast to UML models ER models are not 
standardized. There are several different notations that 
have been proposed such as Weaver (1998) or Barker 
(1990). The components used in ER diagrams are entities, 
relationships, attributes and their relations with each other 
symbolized through connectors including cardinality 
constraints. 

Entities represent discrete objects which exist in the 
real world and are different from each other whereby 
relationships describe the associations among these 
entities. Attributes can be owned by both, entities and 
relationships. They can be seen as properties describing 
values of their owners. 

To distinguish different given entities unique attributes 
called keys are used to identify them. That means that 
two identical entities with equal attributes are not 
allowed. However, it is possible for an entity not to have 
a unique attribute, a so called weak entity. To be able to 
distinguish it, the weak entity must have another 
identifying entity which owns and identifies it. While a 
normal attribute is symbolized by a circle surrounding its 
name, key attributes are additionally underlined. 

To describe possible relations between entities 
cardinality constraints are used. They specify upper and 
lower bounds. One-to-one, one-to-many, many-to-one 
and many-to-many are commonly used constraints.  

Figure 4. Different notation styles for cardinality 
constraints

As mentioned before there is no universal standard 
defining valid notations of ER diagrams. The most 
common differences between several currently used 
notations are: 

Chen (Peter Pin-Shan 1976) used written cardinalities 
such  as N/M or 1 whereas Barker (Barker 1990) used 
symbols called ‘crowsfoot’ to represent the relations 
between dissimilar elements (Figure 4). 

Differences are also found within the connector 
drawing methods. While Chen uses single lines for 
optional and double lines for a mandatory participation in 



a relationship, Weaver (Weaver 1998) proposes the use of 
a broken line for optional and a solid line for a mandatory 
participation.  

Another common difference is whether relationships 
can have attributes. While Chen’s model facilitates this, 
Weaver (Weaver 1998) only allows entities to have 
attributes.   

The main difference visually is the representation of 
connectors including cardinalities. Purchase et al. (2004) 
showed that crowsfoot symbols (Barker 1990; Weaver 
1998) increases the speed of identification when 
compared to written characters (Peter Pin-Shan 1976) 
such as M, N, 0 or 1. Furthermore, Purchase et al. (2004) 
compared Chen’s and Weaver’s cardinality notation and 
found an overall preference of Weaver’s SSADM 
notation especially in the case of the cardinality 
representation. The use of crowsfoot symbols instead of 
written characters was easier to understand. 

From a machine recognition point of view the use of a 
crowsfoot is easier to process. This is mainly because of 
recognition problems with single letters or numbers. The 
first challenge is to successfully determine these as text 
instead of drawing and the second one is to recognize the 
correct character or digit. In this process the letters ‘O’ 
and ‘l’ get mixed-up with the digits ‘0’ and ‘1’, and ‘M’ 
and ‘N’ are often mistaken too.   

Current student textbooks such as Abraham, Henry et 
al. (2005) and Elmasri and Navathe (2006) propose 
notations which use Weaver’s double lines for mandatory 
participation, allow relationships having attributes and 
propose the use of either Chen’s or Barker’s cardinality 
constraint notation.

4 Our Approach 
Our ER extension in InkKit is designed for initial 
sketches therefore the ER’s scope of services is not fully 
exploited. ER features which are currently addressed by 
InkKit are: entities, binary relationships, attributes and 
connectors with cardinality constraints.  

Crowsfoot notation was chosen because of the human 
and machine recognition advantages over the written 
cardinality notation. The different types of connector ends 
specify the cardinality. The lack of a symbol at a 
connector’s end sets the lower and upper bound to 1 
whereas a crowsfoot sets the upper bound to many 
(Figure 4). In the case that no lower bound exists, a circle 
representing an optional constraint is used at the 
corresponding end of the connector. A relation between 
two components can be sketched by using a diamond as 
an alternative to many-to-many connector. 

Furthermore, InkKit’s chosen notation is designed to 
be as close as possible to modern student textbooks for 
example we use diamonds to represent relationships 
instead of writing them directly on the connector. To 
guarantee the best possible recognition rate an easily 
recognized notation was prioritized over staying precisely 
with a particular textbook notations. 

A complete list of ER components recognized by 
InkKit is shown in Figure 5. 

Figure 5. InkKit's notation set

We first integrated an initial interpreter and added new 
domain specific sketches of all ER component via 
InkKit’s library interface. This first implementation 
clarified the challenges the recognition engine must 
overcome. The main difference between the ER domain 
and the already implemented domains is that different ER 
components have very similar shapes; for example the 
three different types of connectors.  

In section 4.1 this problem and its solution is 
explained in more detailed. Afterwards the interpreter 
was implemented in detail including a data model which 
among other things corrects recognition errors. The 
implementation is described in section 4.2. Finally, two 
output modules have been written; one generates text and 
the other Microsoft Office Access files. These are 
explained in more detail in section 4.3. 

4.1 Recognition engine extensions 
Connectors including several different kinds of ends (any 
combination of a plain end, a circle and a crowsfoot) have 
to be successfully recognized. Until the ER domain 
extension was implemented one type of connector per 
domain was standard: the directed graph domain has 
directed connectors whereas the graph domain only has 
undirected ones. The fundamental problem is that all 
connector types are based on at least one shaft. The way 
that the InkKit recognition process builds a graph of all 
likely combinations (note this includes single and 
multiple stroke combinations) and calculates the 
similarity to the predefined sketched examples in the 
domain library causes a problem.  

Let us assume a one-to-many relationship is sketched 
with two strokes, InkKit builds a graph consisting of three 
combinations, one combination which includes both 
strokes and one each for one stroke. By calculating the 
similarities between each combination and the predefined 
sketched examples it is very likely that the combination 
which only contains the ‘shaft’ stroke has a higher 
similarity with its predefined example than the multi 
stroke combination. To cope with this problem InkKit 
calculates features taking spatial relationships within 
multiple stroke combinations into account (such as 
enclosing, enclosed, near or intersecting). Based on the 
relationship a graph weighting is processed supporting 
multi stroke combinations. Connector shafts and their 



crowsfoot symbols typically intersect but connectors can 
also intersect with the components they link to. Therefore 
the tree weighting factor based on intersections cannot be 
strong otherwise all intersecting components are heavily 
supported although they might not belong together.  

To cope with this problem a new feature called ‘over’ 
has been introduced. It calculates the amount of ink on 
both sides of the intersection point of the strokes. If both 
amounts of ink are similar the strokes are over each other. 
In Figure 6 the connector’s crowsfoot is divided into two 
similar sized halves (a) whereas in (b) the relationship 
component is divided into two different sized halves.  

Figure 6. Feature: over with one intersection

If one stroke divides another one into two halves 
through multiple intersections the algorithm compares the 
amount of ink on both sides of the first stroke (Figure 7).  

Before we introduced our new feature the recognition 
of connectors frequently failed. The extension to the 
recognition engine is resulted in considerably less 
failures. To what extend the overall recognition rate has 
been improved cannot be exactly measured in a 
reasonable way because the rate depends on factors such 
as the sketched components and their spatial relations. 
Whereas the new feature has no direct impact on multi 
stroke components which do not match it, the recognition 
rate of the feature matches has been significantly 
increased. An informal test of connectors showed that 
without the implemented ‘over’ feature, 4 out of 10 
connectors were falsely recognized but with the error rate 
fell to less than 1 in 10. 

Figure 7. Feature: over with multiple intersections

4.2 Interpreter data model 
The ER domain specific interpreter defines the existing 
component types; entity, attribute, relationship, connector 
and text. In InkKit’s domain library the sketched ER 
component examples (Figure 5) are assigned to one of the 
component types defined in the interpreter. After the 
recognition process is finished the interpreter gets a list of 
recognized shapes whereby every single shape is assigned 
to one interpreter component type. Based on this list the 
interpreter builds a data model which is handed over to 
the output modules. The data model is built on classes 

describing the entity, attribute and relationship 
components. The build starts with assigning the attributes 
to the corresponding entities and continues with assigning 
attributes to their relationships. Finally the entities are 
assigned to the appropriate relationships. Before the data 
model is built the recognition results is tested for errors. 
The detection is divided into two parts; a spatial and 
context error detection. 

The spatial error detection tests the component’s 
relations based on simple grammar rule productions 
(Costagliola, Deufemia et al. 2004) particularly designed 
for ER diagrams. Thereby any pair of components (entity, 
relationship and attribute) has to be linked with a 
connector. However, two connectors in a consecutive 
spatial order are an invalid sequence of elements. If an 
invalid and not reconstructable arrangement is detected 
the entire sketch recognition result is discarded. The 
interpreter cannot rerun the recognition process so the 
user has to manually classify the incorrectly recognized 
components and restart the recognition. 

The context error detection is based on certain rules; 
entities, relationships and attributes must enclose text 
whereas optional cardinalities do not include text. In the 
case when an attribute without text is detected which is 
also intersecting a connector it is reclassified as an 
optional cardinality constraint. In contrast, an optional 
cardinality constraint enclosing text is reclassified as an 
attribute. 

4.3 Output modules 
Upon the data model being handed over by the 
interpreter, output modules generate files in specific 
formats which can be used by other tools. We have 
implemented two output modules; one generates files in 
Microsoft Office Access format whereas the other 
generates plain text files. 

The mapping from the turned over data into the data 
specific format is based on a compact mapping 
methodology  introduced by Draheim and Weber (2005). 
The principle is not to map every relation into a table; this 
prevents unnecessary inflation of the generated code. The 
decision whether to map a relation into a table is made in 
respect to the given cardinalities. However, if a 
relationship in the form of a diamond is sketched it is 
mapped into a table regardless of the given cardinality.  

Microsoft Office Access is a relational database 
management system. Due to its user friendly User 
Interface and other features software developers almost 
regardless of their skill level can use it to build functional 
prototypes.  

5 Evaluation 
To evaluate InkKit’s implemented ER plug-in an exercise 
from a current student textbook (Abraham, Henry et al. 
2005) is used. The assignment (page 256, 6.1) is to 
“Construct an E-R diagram for a car insurance company 
whose customers own one or more cars each. Each car 
has associated with it zero to many number of recorded 
accidents.” This exercise includes every implemented ER  



Figure 8. The successfully recognized sketched solution of the practice exercise

component and several different cardinality constraints 
such as zero-to-many, one-to-one and one-to-many. 
Additionally, the solution includes binary relationships 
owning attributes. The sketched solution is shown in 
Figure 8, plain text in Figure 9 and the corresponding 
Microsoft Office Access file in Figure 10.  

6 Discussion 
Sketched diagrams are often used as the first step for 
designing systems. Different kinds of diagrams are 
already recognized by InkKit and other sketch tools. 
However, recognizing ER diagrams using a generic 
recognition engine carries new challenges. For example, 
finding features to distinguish relationship cardinality 
constraints from other sketched shapes as well as from 
each other is difficult to realize with a generic recognition 
engine because it cannot be specialized towards particular 
domain components. Being a central part of ER diagrams 
makes the successful differentiation of cardinality 
constraints essential. Similar notations are also found in 
other types of diagrams such as UML class and activity 
diagrams. This was a motivating factor for the decision to 
add ER diagrams to InkKit’s scope of services. 

Figure 9. The generated plain text output solution of the 
practice exercise.

Figure 10. The generated Microsoft Office Access output 
solution of the practice exercise.

We have explored ER diagrams including their 
different notations and limitations. One part of the ER 
notation set where two different common versions exist is 
the cardinality constraints (Peter Pin-Shan 1976; Barker 
1990). There is a written and a symbolic notation style 
(Figure 4) specifying the relations between entity 
components. The advantage of the symbolic notation for 
humans is the ease of comprehension. Additionally, the 
machine recognition rate of symbols is significantly 
higher than for single letters and digits. However, the use 
of symbols limits the granularity of relationship 
constraints; e.g. it is only possible to express nothing, one 
and many whereas the use of letters and digits enables an 
infinitely more specific expression (Purchase, Welland et 
al. 2004). Nevertheless, being designed for preliminary 
sketches the symbolic notation is sufficient for InkKit’s 
ER plug-in.   

Furthermore, not all ER components are considered in 
the ER plug-in (such as derivation, composite or multi-
valued attributes and non-binary relationship sets) 
because the ER plug-in is intended to cover preliminary 
sketches. Another element which is not part of our 
implementation is the total participation notation, a 
double lined connection to indicate a mandatory 
participation of an entity in a relationship. We defined a 
connector without any crowsfoot symbols as a one-to-one 
cardinality constraint implying a total participation which 
makes the double line approach unnecessary. To model a 
voluntary participation we implemented the optional 
cardinality constraint component. This carried another 



recognition challenge because the already existing 
component attribute has a very similar shape; an ellipse in 
comparison to a circle. The fact that attributes always 
enclose text and the optional cardinality constraint does 
not, is used to correct this false recognition in the plug in. 
However, this solution is not absolutely satisfying 
because it cures the problem after it occurs instead of 
preventing it from happening.  

Another decision we made was how severe a false 
recognition has to be to abandon the complete recognized 
sketch result. We found that errors like mixing up 
attributes and optional cardinality constraints are not 
critical. Whereas if two consecutive connectors or any 
pair of components (entity, relationship and attribute) are 
detected the entire recognition result is discarded, since 
those arrangements are not allowed and if it is not 
possible to reconstruct the right components the entire 
result is compromised. 

Another choice was the mapping method of the 
recognized data model into the format specific data. 
Concerning relationships there are two different mapping 
methods. The first one is a straight forward so called 
‘direct mapping’ method where basically every relation is 
mapped into a table (Draheim and Weber 2005). The 
second one, called compact mapping, does not 
necessarily do that. Based on the given cardinality 
information the compact model merges relations. For 
example many-to-many relations are always mapped into 
a table whereas one-to-many and one-to-one are not. The 
reason to implement the compact mapping model is to 
dispose of unnecessary and redundant information. There 
is no need to generate a table for a one-to-many because 
referencing a foreign key from the ‘many’ table in the 
‘one’ table is sufficient information.  

Implementing an ER domain into InkKit with a scope 
of services covering preliminary sketches enabled an 
evaluation of this new combination. The new findings 
could be adopted in other domains implemented in 
generic sketch tools to increase the recognition rate of 
multi-stroke connectors. Additionally, the decisions made 
about ER’s different notations regarding easiness of 
sketching and recognition provide a basis for future 
sketch tool domain implementations such as UML 
collaboration and object diagrams or ones with similar 
notations. 

The effort required to extend InkKit is significantly 
less than that of developing a domain specific sketch tool. 
Depending on the scope of services the interpreter covers, 
an implementation varies from 150 lines of code 
(InkKit’s Organization Chart Interpreter) to 880 (InkKit’s 
ER Interpreter). The same applies for the output 
generators. While the simplest version consists of 130 
lines of code (InkKit’s graph text output module) the 
most complex one has over 350 (InkKit’s ER Microsoft 
Office Access output module). 

7 Conclusion and Future Work 
As an example of diagrams with complex connectors the 
ER diagram has been implemented into InkKit. The 
interconnectivity between ER components enabled for the 
first time in InkKit the use of a spatial and context error 

correction model. We increased the recognition rate by 
introducing new features into InkKit’s core recognizer.  

We explored the combination of sketching and ER 
diagrams in detail and decided, based on our findings, 
which set of notations an ER sketching tool should have. 
By using the symbolic cardinality notation rather than the 
written one, a user and recognition friendly approach has 
been chosen. Furthermore, InkKit provides a powerful 
way to automatically generate preliminary ER diagram 
sketches into a specific data format. The evaluation has 
demonstrated the scope of services of InkKit’s new ER 
domain including the successful recognition and 
generation of plain text and Microsoft Office Access 
code.  

More detailed evaluations about which components 
real preliminary sketches consist of, the chosen notation 
and its user acceptance are necessary. Additionally, to 
examine the efficiency and easiness an evaluation of 
InkKit’s new ER domain against widget based tools is 
needed. There is potential for implementations of other 
similar domains based on this work. 

8 References 
Abraham, S., F. K. Henry, et al. (2005). Database System 

Concepts, McGraw-Hill, Inc. 
Alvarado, C. and R. Davis (2004). SketchREAD: a multi-

domain sketch recognition engine. Proceedings of the 
17th annual ACM symposium on User interface 
software and technology, Santa Fe, NM, USA, ACM 
Press. 

Bailey, B. P. and J. A. Konstan (2003). Are Informal 
Tools Better? Comparing DEMAIS, Pencil and Paper, 
and Authorware for Early Multimedia Design. CHI 
2003, Ft Lauderdale, ACM. 

Bailey, B. P., J. A. Konstan, et al. (2001). DEMAIS: 
Designing Multimedia Applications with Interactive 
Storyboards. ACM Multimedia. 

Barker, R. (1990). CASE Method Tasks & Deliverables, 
Addison Wesley. 

Chen, Q., J. Grundy, et al. (2003). An E-whiteboard 
application to support early design-stage sketching of 
UML diagrams. Human Centric Computer Languages 
and Environments, Auckland, NZ, IEEE. 

Costagliola, G., V. Deufemia, et al. (2004). A Parsing 
Technique for Sketch Recognition Systems. Visual 
Languages and Human Centric Computing, 2004 IEEE 
Symposium on. 

Coyette, A., J. Vanderdonckt, et al. (2007). SketchiXML: 
A Design Tool for Informal User Interface Rapid 
Prototyping Berlin / Heidelberg, Springer 160-176. 

Damm, C. H., K. M. Hansen, et al. (2000). Tool support 
for cooperative object-oriented design: Gesture based 
modelling on and electronic whiteboard. Chi 2000, 
ACM. 

Draheim, D. and G. Weber (2005). Form-Oriented 
Analysis, Springer Berlin Heidelberg. 



Elmasri, R. and S. B. Navathe (2006). Fundamentals of 
Database Systems (5th Edition), Addison-Wesley 
Longman Publishing Co., Inc. 

Goel, V. (1995). Sketches of thought. Cambridge, 
Massachusetts, The MIT Press. 

Hammond, T. and R. Davis (2002). Tahuti: A 
Geometrical Sketch Recognition System for UML 
Class Diagrams. 2002 AAAI Spring Symposium on 
Sketch Understanding. 

Landay, J. and B. Myers (1996). Sketching storyboards to 
illustrate interface behaviors. CHI '96, Vancouver, BC 
Canada, ACM. 

Lank, E. H. (2003). A Retargetable Framework for 
Interactive Diagram Recognition. Proceedings of the 
Seventh International Conference on Document 
Analysis and Recognition - Volume 1, IEEE Computer 
Society. 

Lin, J., M. W. Newman, et al. (2000). Denim: Finding a 
tighter fit between tools and practice for web design. 
Chi 2000, ACM. 

Peter Pin-Shan, C. (1976). "The entity-relationship model 
- toward a unified view of data." ACM Trans. Database 
Syst. 1(1): 9-36. 

Plimmer, B. and I. Freeman (2007). A Toolkit Approach 
to Sketched Diagram Recognition. HCI, Lancaster, 
UK, eWiC. 

Plimmer, B., G. Tang, et al. (2006). Sketch Tool 
Usability: Allowing the user to disengage. HCI 
London, ACM. 

Plimmer, B. E. and M. Apperley (2003). Freeform: A 
Tool for Sketching Form Designs. BHCI, Bath. 

Plimmer, B. E. and M. Apperley (2003). Software for 
Students to Sketch Interface Designs. Interact, Zurich. 

Plimmer, B. E. and M. Apperley (2004). INTERACTING 
with sketched interface designs: an evaluation study. 
SigChi 2004, Vienna, ACM. 

Purchase, H. C., R. Welland, et al. (2004). 
"Comprehension of diagram syntax: an empirical study 
of entity relationship notations." Int. J. Hum.-Comput. 
Stud. 61(2): 187-203. 

Rubine, D. (1991). Specifying gestures by example. 
Proceedings of Siggraph '91, ACM. 

Weaver, P. L. (1998). Practical SSADM Version 4, 
Trans-Atlantic Publications. 

Yeung, L. W. S. (2007). Exploring beautification and the 
effects of designs' level of formality on the design 
performance during the early stages of the design 
process Department of Psychology. Auckland, 
University of Auckland. MSc. 


